中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

過點C(0,1)的橢圓的離心率為,橢圓與x軸交于兩點,過點C的直線與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q.

(I)當直線過橢圓右焦點時,求線段CD的長;
(II)當點P異于點B時,求證:為定值.

(I)    (II)=4

解析試題分析:(Ⅰ)由已知得,解得,所以橢圓方程為
橢圓的右焦點為,此時直線的方程為 ,代入橢圓方程得,解得,代入直線的方程得 ,所以      
,故.     
(Ⅱ)當直線軸垂直時與題意不符.
設直線的方程為.代入橢圓方程得
解得,代入直線的方程得
所以D點的坐標為
又直線AC的方程為,又直線BD的方程為,聯立得因此,又.所以.故為定值.  
考點:直線與圓錐曲線的綜合問題 平面向量數量積的運算 橢圓的簡單性質.
點評:本題主要考察了由橢圓的性質求解橢圓方程,直線與曲線相交的弦長公式的應用及向量的數量積的坐標表示的應用,屬于圓錐曲線問題的綜合應用

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

若雙曲線與橢圓有相同的焦點,與雙曲線有相同漸近線,求雙曲線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(1) 求拋物線的方程;
(2) 當點為直線上的定點時,求直線的方程;
(3) 當點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在直接坐標系中,直線的方程為,曲線的參數方程為為參數).
(I)已知在極坐標(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,點的極坐標為(4,),判斷點與直線的位置關系;
(II)設點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C的中心在原點,焦點在x軸上,離心率為,短軸長為4.

(I)求橢圓C的標準方程;
(II)直線x=2與橢圓C交于P、Q兩點,A、B是橢圓O上位于直線PQ兩側的動點,且直線AB的斜率為.
①求四邊形APBQ面積的最大值;
②設直線PA的斜率為,直線PB的斜率為,判斷+的值是否為常數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點到兩點的距離之和等于4,設點的軌跡為,直線與軌跡交于兩點.
(Ⅰ)寫出軌跡的方程;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是橢圓的左、右焦點,是橢圓上位于第一象限內的一點,點也在橢圓上,且滿足是坐標原點),,若橢圓的離心率為.
(1)若的面積等于,求橢圓的方程;
(2)設直線與(1)中的橢圓相交于不同的兩點,已知點的坐標為(),點在線段的垂直平分線上,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

橢圓的離心率為,兩焦點分別為,點M是橢圓C上一點,的周長為16,設線段MO(O為坐標原點)與圓交于點N,且線段MN長度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當點在橢圓C上運動時,判斷直線與圓O的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上.若橢圓上的點到焦點的距離之和等于4.
(1)寫出橢圓的方程和焦點坐標.
(2)過點的直線與橢圓交于兩點,當的面積取得最大值時,求直線的方程.

查看答案和解析>>

同步練習冊答案