中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本小題共14分)已知函數其中常數.
(1)當時,求函數的單調遞增區間;
(2)當時,若函數有三個不同的零點,求m的取值范圍;
(3)設定義在D上的函數在點處的切線方程為時,若在D內恒成立,則稱P為函數的“類對稱點”,請你探究當時,函數是否存在“類對稱點”,若存在,請最少求出一個“類對稱點”的橫坐標;若不存在,說明理由.

(1)的單調遞增區間為.(2).
(3)是一個類對稱點的橫坐標.

解析試題分析:(1)由f(x)="2x-(a+2)+" ==
,能求出當a>2時,求函數f(x)的單調遞增區間.
(2)a=4,f′(x)=2x+-6,故f(x)="2x+" -6≥4-6,不存在6x+y+m=0這類直線的切線.
(3)y=g(x)=(2x0+ -6)(x-x0)+ -6x0+4lnx0,令h(x)=f(x)-g(x),由此入手,能夠求出一個“類對稱點”的橫坐標.
解:(1)由可知,函數的定義域為
.
因為,所以.
時,;當時,
所以的單調遞增區間為.
(2)當時,.
所以,當變化時,的變化情況如下:


(0,1)
1
(1,2)
2
(2,

+
0

0
+

單調遞增
取極大值
單調遞減
取極小值
單調遞增
所以
.
函數的圖象大致如下:
 
所以若函數有三個不同的零點,.
(3)由題意,當時,,則在點P處切線的斜率;所以
.

.
時,上單調遞減,所以當時,從而有時,
時,
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題14分) 已知函數f(x)=ax3+bx2+cx(a≠0)是定義在R上的奇函數,且x=-1時,函數取極值1。
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤2;
(3)求證:曲線y=f(x)上不存在兩個不同的點A,B,使過A, B兩點的切線都垂直于直線AB。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)函數
(Ⅰ)求的單調區間和最小值;
(Ⅱ)討論的大小關系;
(Ⅲ)是否存在,使得對任意成立?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=(x2+ax+2)ex,(x,a∈R).
(1)當a=0時,求函數f(x)的圖象在點A(1,f(1))處的切線方程;
(2)若函數y=f(x)為單調函數,求實數a的取值范圍;
(3)當時,求函數f(x)的極小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知函數
(I)求的單調區間;(II)求在區間上的最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)已知函數
(1)若當的表達式;
(2)求實數上是單調函數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若的單調增區間是(0,1)求m的值。
(2)當時,函數的圖象上任意一點的切線斜率恒大于3m,求m的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)已知函數
① 求這個函數的導數;
② 求這個函數的圖象在點x=1處的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知函數
(1)討論函數在定義域內的極值點的個數;
(2)若函數處取得極值,對,恒成立,
求實數的取值范圍;
(3)當時,求證:

查看答案和解析>>