中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本小題滿分14分)設函數,.
(Ⅰ)當時,上恒成立,求實數的取值范圍;
(Ⅱ)當時,若函數上恰有兩個不同零點,求實數的取值范圍;
(Ⅲ)是否存在實數,使函數和函數在公共定義域上具有相同的單調性?若存在,求出的值,若不存在,說明理由.

解:(Ⅰ)由a=0,f(x)≥h(x)可得-mlnx≥-x 即 ┉┉┉┉┉┉┉┉1分
,則f(x)≥h(x)在(1,+∞)上恒成立等價于.
求得 ┉┉┉┉┉┉┉┉2分
時;;當時, ┉┉┉┉┉┉┉┉3分
在x=e處取得極小值,也是最小值,
,故. ┉┉┉┉┉┉┉┉4分
(Ⅱ)函數k(x)=f(x)-h(x)在[1,3]上恰有兩個不同的零點等價于方程x-2lnx=a,在[1,3]上恰有兩個相異實根。┉┉┉┉┉┉┉┉5分
令g(x)=x-2lnx,則 ┉┉┉┉┉┉┉┉6分
時,,當時,
g(x)在[1,2]上是單調遞減函數,在上是單調遞增函數。
 ┉┉┉┉┉┉┉┉8分
又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),∴只需g(2)<a≤g(3),
故a的取值范圍是(2-2ln2,3-2ln3) ┉┉┉┉┉┉┉┉9分
(Ⅲ)存在m=,使得函數f(x)和函數h(x)在公共定義域上具有相同的單調性
,函數f(x)的定義域為(0,+∞)。┉┉┉┉┉┉10分
,則,函數f(x)在(0,+∞)上單調遞增,不合題意;┉┉┉11分
,由可得2x2-m>0,解得x>或x<-(舍去)
時,函數的單調遞增區間為(,+∞)
單調遞減區間為(0, ) ┉┉┉┉┉┉┉┉12分
而h(x)在(0,+∞)上的單調遞減區間是(0,),單調遞增區間是(,+∞)
故只需=,解之得m= ┉┉┉┉┉┉┉┉13分
即當m=時,函數f(x)和函數h(x)在其公共定義域上具有相同的單調性。┉14分.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求的單調區間;
(2)設,若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
已知.
(I)求函數上的最小值;
(II)對一切恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


(1)求的單調區間和最小值;
(2)討論的大小關系;
(3)求的取值范圍,使得對任意>0成立

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
函數,其中為常數.
(1)證明:對任意的圖象恒過定點;
(2)當時,判斷函數是否存在極值?若存在,求出極值;若不存在,說明理由;
(3)若對任意時,恒為定義域上的增函數,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)函數
(Ⅰ)若處的切線相互垂直,求這兩個切線方程;
(Ⅱ)若單調遞增,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)若直線過點,且與曲線都相切,
求實數的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知函數.
(Ⅰ)設,討論的單調性;
(Ⅱ)若對任意恒有,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知x = 1是的一個極值點
(I)求b的值;
(II)求函數f(x)的單調減區間;
(III)設,試問過點(2,5)可作多少條直線與曲線相切?請說明理由.

查看答案和解析>>

同步練習冊答案