已知函數(shù)f(x)=lnx-ax(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時,求函數(shù)f(x)在[1,2]上的最小值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中m,a均為實(shí)數(shù).
(1)求
的極值;
(2)設(shè)
,若對任意的![]()
,
恒成立,求
的最小值;
(3)設(shè)
,若對任意給定的
,在區(qū)間
上總存在
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)若
為
的極值點(diǎn),求
的值;
(2)若
的圖象在點(diǎn)
處的切線方程為
,
①求
在區(qū)間
上的最大值;
②求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=a2ln x-x2+ax,a>0.
①求f(x)的單調(diào)區(qū)間;②求所有實(shí)數(shù)a,使e-1≤f(x)≤e2對x∈[1,e]恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一火車鍋爐每小時煤的消耗費(fèi)用與火車行駛速度的立方成正比,已知當(dāng)速度為20 km/h時,每小時消耗的煤價值40元,其他費(fèi)用每小時需400元,火車的最高速度為100 km/h,火車以何速度行駛才能使從甲城開往乙城的總費(fèi)用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
+ln x.
(1)當(dāng)a=
時,求f(x)在[1,e]上的最大值和最小值;
(2)若函數(shù)g(x)=f(x)-
x在[1,e]上為增函數(shù),求正實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,以點(diǎn)
為切點(diǎn)作函數(shù)圖像的切線
,直線
與函數(shù)
圖像及切線
分別相交于
,記
.
(1)求切線
的方程及數(shù)列
的通項(xiàng);
(2)設(shè)數(shù)列
的前
項(xiàng)和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若
,其中
.
(1)當(dāng)
時,求函數(shù)
在區(qū)間
上的最大值;
(2)當(dāng)
時,若
,
恒成立,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com