科目:高中數學 來源: 題型:解答題
已知函數f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)討論函數f(x)的單調性.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數f(x)=x2-(a-2)x-alnx.
(1)求函數f(x)的單調區間;
(2)若函數f(x)有兩個零點,求滿足條件的最小正整數a的值;
(3)若方程f(x)=c有兩個不相等的實數根x1、x2,求證:f′
>0.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=
,且f(x)的圖象在x=1處與直線y=2相切.
(1)求函數f(x)的解析式;
(2)若P(x0,y0)為f(x)圖象上的任意一點,直線l與f(x)的圖象切于P點,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=ax-
-3ln x,其中a為常數.
(1)當函數f(x)的圖象在點
處的切線的斜率為1時,求函數f(x)在
上的最小值;
(2)若函數f(x)在區間(0,+∞)上既有極大值又有極小值,求a的取值范圍;
(3)在(1)的條件下,過點P(1,-4)作函數F(x)=x2[f(x)+3lnx-3]圖象的切線,試問這樣的切線有幾條?并求出這些切線方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com