中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

一個如圖所示的不規則形鐵片,其缺口邊界是口寬4分米,深2分米(頂點至兩端點所在直線的距離)的拋物線形的一部分,現要將其缺口邊界裁剪為等腰梯形.
(1)若保持其缺口寬度不變,求裁剪后梯形缺口面積的最小值;
(2)若保持其缺口深度不變,求裁剪后梯形缺口面積的最小值.

(1)6,(2).

解析試題分析:(1)由題意得:保持其缺口寬度不變,需在A,B點處分別作拋物線的切線. 以拋物線頂點為原點,對稱軸為軸,建立平面直角坐標系,則,從而邊界曲線的方程為.因為拋物線在點處的切線斜率,所以,切線方程為,與軸的交點為.此時梯形的面積平方分米,即為所求.(2)若保持其缺口深度不變,需使兩腰分別為拋物線的切線. 設梯形腰所在直線與拋物線切于時面積最小.此時,切線方程為,其與直線相交于,與軸相交于.此時,梯形的面積.故,當時,面積有最小值為
解:(1)以拋物線頂點為原點,對稱軸為軸,建立平面直角坐標系,則
從而邊界曲線的方程為
因為拋物線在點處的切線斜率
所以,切線方程為,與軸的交點為
此時梯形的面積平方分米,即為所求.
(2)設梯形腰所在直線與拋物線切于時面積最小.
此時,切線方程為
其與直線相交于
軸相交于
此時,梯形的面積.……11分
(這兒也可以用基本不等式,但是必須交代等號成立的條件)
=0,得
時,單調遞減;
時,單調遞增,
故,當時,面積有最小值為
考點:利用導數研究函數最值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
設函數R,求函數在區間上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax3+(a-2)x+c的圖象如圖所示.

(1)求函數y=f(x)的解析式;
(2)若g(x)=-2ln x在其定義域內為增函數,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是函數的兩個極值點,其中.
(1)求的取值范圍;
(2)若為自然對數的底數),求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,).
(Ⅰ)當時,求曲線在點處切線的方程;
(Ⅱ)求函數的單調區間;
(Ⅲ)當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的單調區間;
(2)若函數的圖像與直線恰有兩個交點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數圖象與直線相切,切點橫坐標為.
(1)求函數的表達式和直線的方程;(2)求函數的單調區間;
(3)若不等式定義域內的任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求在點(1,0)處的切線方程;
(2)判斷在區間上的單調性;
(3)證明:上恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數上是單調遞減函數,
方程無實根,若“”為真,“”為假,求的取值范圍。

查看答案和解析>>

同步練習冊答案