設(shè)向量![]()
(1)若
,求
的值
(2)設(shè)函數(shù)
,求
的取值范圍
(1)
;(2)
.
解析試題分析: (1)利用向量的模長(zhǎng)公式
化簡(jiǎn)得到關(guān)于
關(guān)系式,進(jìn)而求得
的值,再利用三角函數(shù)值,結(jié)合角的范圍求得
的值;(2)利用三角恒等變形化成
,再利用三角函數(shù)的圖像與性質(zhì)求解.規(guī)律總結(jié):1.涉及平面向量的模長(zhǎng)、數(shù)量積等運(yùn)算時(shí),要合理選用公式(向量形式或坐標(biāo)形式); 2.三角恒等變形的關(guān)鍵,要正確運(yùn)用公式及其變形,如:二倍角公式的變形
,![]()
求
在某區(qū)間的值域時(shí),一定要結(jié)合正弦函數(shù)、余弦函數(shù)的圖像求解.
注意點(diǎn):學(xué)生對(duì)公式及其變形運(yùn)用的靈活性不夠,學(xué)生應(yīng)加強(qiáng)公式的記憶和應(yīng)用;求
的值域時(shí),學(xué)生不善于利用數(shù)形結(jié)合思想,往往想當(dāng)然,最大值為1,最小值為-1.
試題解析:(1)![]()
![]()
![]()
![]()
=
又
;
的取值范圍是
.
考點(diǎn):1.平面向量的數(shù)量積,2.三角恒等變形,3.三角函數(shù)的圖像與性質(zhì)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
為坐標(biāo)原點(diǎn),
=(
),
=(1,
),
.
(1)若
的定義域?yàn)閇-
,
],求y=
的單調(diào)遞增區(qū)間;
(2)若
的定義域?yàn)閇
,
],值域?yàn)閇2,5],求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,
, 且![]()
(1) 求函數(shù)
的解析式;
(2) 當(dāng)
時(shí),
的最小值是-4 , 求此時(shí)函數(shù)
的最大值, 并求出相應(yīng)的
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
:
的焦點(diǎn)為
,若過點(diǎn)
且斜率為
的直線與拋物線相交于
兩點(diǎn),且
.
(1)求拋物線
的方程;
(2)設(shè)直線
為拋物線
的切線,且
∥
,
為
上一點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
+
=1(a>b>0)的離心率e=
,橢圓C的上、下頂點(diǎn)分別為A1,A2,左、右頂點(diǎn)分別為B1,B2,左、右焦點(diǎn)分別為F1,F(xiàn)2.原點(diǎn)到直線A2B2的距離為
.![]()
(1)求橢圓C的方程;
(2)過原點(diǎn)且斜率為
的直線l,與橢圓交于E,F(xiàn)點(diǎn),試判斷∠EF2F是銳角、直角還是鈍角,并寫出理由;
(3)P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2,分別交
軸于點(diǎn)N,M,若直線OT與過點(diǎn)M,N 的圓G相切,切點(diǎn)為T.證明:線段OT的長(zhǎng)為定值,并求出該定值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com