中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

已知函數(shù),其中
(Ⅰ)若,求曲線在點處的切線方程;
(Ⅱ)求在區(qū)間上的最大值和最小值.

(I);(II)詳見解析.

解析試題分析:(I)求出導數(shù)即切線斜率,代入點斜式;(II)列表,依據(jù)參數(shù)分情況討論,求最值.
試題解析:(Ⅰ)解:的定義域為, 且 .             2分
時,
所以曲線在點處的切線方程為
.                                              4分
(Ⅱ)解:方程的判別式為
(ⅰ)當時,,所以在區(qū)間上單調(diào)遞增,所以在區(qū)間
上的最小值是;最大值是.                    6分
(ⅱ)當時,令,得 ,或.                    
的情況如下:

  • <menuitem id="spc2n"></menuitem>
    <sup id="spc2n"></sup>













    • 練習冊系列答案
      相關(guān)習題

      科目:高中數(shù)學 來源: 題型:解答題

      已知函數(shù)().
      (1)當時,求函數(shù)的單調(diào)區(qū)間;
      (2)當時,取得極值,求函數(shù)上的最小值;

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      設(shè)函數(shù)F(x )=x2+aln(x+1)
      (I)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
      (II)若函數(shù)y=f(x)有兩個極值點x1,x2,求證:.

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      設(shè)函數(shù)(Ⅰ)若函數(shù)上單調(diào)遞減,在區(qū)間單調(diào)遞增,求的值;
      (Ⅱ)若函數(shù)上有兩個不同的極值點,求的取值范圍;
      (Ⅲ)若方程有且只有三個不同的實根,求的取值范圍。

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      設(shè)函數(shù)   
      (Ⅰ)若時有極值,求實數(shù)的值和的單調(diào)區(qū)間;
      (Ⅱ)若在定義域上是增函數(shù),求實數(shù)的取值范圍.

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      已知函數(shù)
      (Ⅰ)當時,函數(shù)取得極大值,求實數(shù)的值;
      (Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)存在導數(shù),則存在
      ,使得. 試用這個結(jié)論證明:若函數(shù)
      (其中),則對任意,都有
      (Ⅲ)已知正數(shù)滿足,求證:對任意的實數(shù),若時,都
      .

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      已知函數(shù), 
      (1)求函數(shù)的單調(diào)區(qū)間;
      (2)若函數(shù)上是減函數(shù),求實數(shù)的最小值;
      (3)若,使成立,求實數(shù)取值范圍.

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      已知函數(shù)
      (1)討論函數(shù)的單調(diào)區(qū)間;
      (2)已知對定義域內(nèi)的任意恒成立,求實數(shù)的取值范圍.

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      已知函數(shù),在點處的切線方程為
      (Ⅰ)求函數(shù)的解析式;
      (Ⅱ)若對于區(qū)間上任意兩個自變量的值,都有,求實數(shù)的最小值;
      (Ⅲ)若過點,可作曲線的三條切線,求實數(shù) 的取值范圍.

      查看答案和解析>>
      • <output id="spc2n"></output>