中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數,其中為自然對數的底數.
(Ⅰ)當時,求曲線處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若函數存在一個極大值和一個極小值,且極大值與極小值的積為,求
值.

(Ⅰ)所求面積為. (Ⅱ).

解析試題分析:(Ⅰ),    當時,
,所以曲線處的切線方程為切線與軸、軸的交點坐標分別為, 所以,所求面積為.
(Ⅱ)因為函數存在一個極大值點和一個極小值點,
所以,方程內存在兩個不等實根,
.  ,則
為函數的極大值和極小值,

因為,,所以,

解得,,此時有兩個極值點,所以.
考點:本題主要考查導數的幾何意義,直線方程,應用導數研究函數的單調性及極值。
點評:典型題,本題屬于導數應用中的基本問題,(2)涉及方程實根的討論及研究,運用了韋達定理,輕聲道切線斜率,等于函數在切點的導函數值。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知二次函數和“偽二次函數” .
(Ⅰ)證明:只要,無論取何值,函數在定義域內不可能總為增函數;
(Ⅱ)在同一函數圖像上任意取不同兩點A(),B(),線段AB中點為C(),記直線AB的斜率為k.
(1)對于二次函數,求證
(2)對于“偽二次函數” ,是否有(1)同樣的性質?證明你的結論。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設定函數 (>0),且方程的兩個根分別為1,4。
(Ⅰ)當=3且曲線過原點時,求的解析式;
(Ⅱ)若無極值點,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為偶函數,曲線過點(2,5), .
(1)若曲線有斜率為0的切線,求實數的取值范圍;
(2)若當時函數取得極值,確定的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
若函數處取得極值,試求的值;
在(1)的條件下,當時,恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知實數,函數
(Ⅰ)若函數有極大值32,求實數的值;
(Ⅱ)若對,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

的導數為,若函數的圖像關于直對稱,且. (1)求實數的值 ;(2)求函數的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=lnx-.
(1)當時,判斷f(x)在定義域上的單調性;
(2)若f(x)在[1,e]上的最小值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論函數在定義域內的極值點的個數;
(2)若函數處取得極值,對,恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案