中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知實數,函數
(Ⅰ)若函數有極大值32,求實數的值;
(Ⅱ)若對,不等式恒成立,求實數的取值范圍.

(1)(2)

解析試題分析:解:(Ⅰ)
                       2分

                         4分
有極大值32,又
時取得極大值           5分
                         6分
(Ⅱ)由知:
時,函數上是增函數,在上是減函數
此時,                 7分
又對,不等式恒成立

               9分
時,函數上是減函數,在上是增函數

此時,                 11分
又對,不等式恒成立

                           13分
故所求實數的取值范圍是                   14分
考點:導數的運用
點評:主要是考查了導數在研究函數中的運用,通過導數的符號以及極值來得到最值,求解參數的范圍,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(1)若對一切恒成立,求的取值范圍;
(2)在函數的圖像上取定兩點,記直線 的斜率為,證明:存在,使成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若p=2,求曲線處的切線方程;
(2)若函數在其定義域內是增函數,求正實數p的取值范圍;
(3)設函數,若在[1,e]上至少存在一點,使得成立,求實數p的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=(1+x)2-2ln (1+x).
(1)求函數f(x)的單調區間;
(2)若關于x的方程f(x)=x2xa在[0,2]上恰有兩個相異實根,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中為自然對數的底數.
(Ⅰ)當時,求曲線處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若函數存在一個極大值和一個極小值,且極大值與極小值的積為,求
值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若x=1時取得極值,求實數的值;
(2)當時,求上的最小值;
(3)若對任意,直線都不是曲線的切線,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某分公司經銷某種品牌產品,每件產品的成本為3元,并且每件產品需向總公司交3元的管理費,預計當每件產品的售價為元(∈[7,11])時,一年的銷售量為萬件.
(1)求分公司一年的利潤(萬元)與每件產品的售價的函數關系式;
(2)當每件產品的售價為多少元時,分公司一年的利潤最大,并求出的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數處取得極值.
(1)求實數的值;
(2)若關于的方程在區間上恰有兩個不同的實數根,求實數的取值范圍;
(3)證明:對任意的正整數,不等式都成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(I)若曲線與曲線在它們的交點處具有公共切線,求的值;
(II)當時,若函數在區間內恰有兩個零點,求的取值范圍;
(III)當時,求函數在區間上的最大值

查看答案和解析>>

同步練習冊答案