已知
為偶函數(shù),曲線
過點(diǎn)(2,5),
.
(1)若曲線
有斜率為0的切線,求實(shí)數(shù)
的取值范圍;
(2)若當(dāng)
時(shí)函數(shù)
取得極值,確定
的單調(diào)區(qū)間.
(1)
(2)
為
的單調(diào)遞增區(qū)間,
為
的單調(diào)遞增區(qū)間。
解析試題分析:(1)
為偶函數(shù),故對(duì)
,總有
,易得
,
又曲線
過點(diǎn)(2,5),得
,得
,
,
.
曲線
有斜率為0的切線,故
有實(shí)數(shù)解.此時(shí)有
,解得![]()
(2)因
時(shí)函數(shù)
取得極值,故有
,解得![]()
又
,令
,得
.
![]()
當(dāng)
時(shí),
,![]()
當(dāng)
時(shí),
,![]()
從而
為
的單調(diào)遞增區(qū)間,
為
的單調(diào)遞增區(qū)間。
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):導(dǎo)數(shù)本身是個(gè)解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請(qǐng)注意歸納常規(guī)方法和常見注意點(diǎn)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中![]()
(1)若曲線
在點(diǎn)
處的切線方程為
,求函數(shù)
的解析式;
(2)討論函數(shù)
的單調(diào)區(qū)間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若p=2,求曲線
處的切線方程;
(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實(shí)數(shù)p的取值范圍;
(3)設(shè)函數(shù)
,若在[1,e]上至少存在一點(diǎn)
,使得
成立,求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
;![]()
(1)若
在
處取極值,求
的值;
(2)設(shè)直線
和
將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個(gè)區(qū)域(不包括邊界),若
圖象恰好位于其中一個(gè)區(qū)域,試判斷其所在區(qū)域并求出相應(yīng)的
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=(1+x)2-2ln (1+x).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=x2+x+a在[0,2]上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
為自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)
時(shí),求曲線
在
處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若函數(shù)
存在一個(gè)極大值和一個(gè)極小值,且極大值與極小值的積為
,求
的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交3元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為
元(
∈[7,11])時(shí),一年的銷售量為
萬件.
(1)求分公司一年的利潤(rùn)
(萬元)與每件產(chǎn)品的售價(jià)
的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),分公司一年的利潤(rùn)
最大,并求出
的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com