中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

是否存在這樣的實數a,使函數f(x)=x2+(3a-2)x+a-1在區間[-1,3]上恒有一個零點,且只有一個零點?若存在,求出a的取值范圍;若不存在,說明理由.

a的取值范圍為a>1或a<-

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知是定義在上的奇函數,當時,
(1)求
(2)求的解析式;
(3)若,求區間

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,函數的最大值是14,求的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在R上的函數及二次函數滿足:.
(1)求的解析式;
(2)對于,均有成立,求的取值范圍;
(3)設,討論方程的解的個數情況.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是定義在區間上的奇函數,且,若時,有.
(1)解不等式:
(2)若不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義域為R的函數f(x)為奇函數,且滿足f(x+2)=-f(x),當x∈[0,1]時,f(x)=2x-1.
(1)求f(x)在[-1,0)上的解析式;
(2)求f(24)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

規定[t]為不超過t的最大整數,例如[12.6]=12,[-3.5]=-4,對任意實數x,令f1(x)=[4x],g(x)=4x-[4x],進一步令f2(x)=f1[g(x)].
(1)若x=,分別求f1(x)和f2(x);
(2)若f1(x)=1,f2(x)=3同時滿足,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知的三內角分別為,向量
,記函數.
(1)若,求的面積;
(2)若關于的方程有兩個不同的實數解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

的反函數為,則方程的解           

查看答案和解析>>

同步練習冊答案