中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)已知函數).
(I)當時,求在點處的切線方程;
(Ⅱ)求函數上的最小值.

解:(I)當時,     ……3分
所以在點處的切線方程為,即…………5分
(II),  ……………7分
①當時,在上導函數
所以上遞增,可得的最小值為;    ………………9分
②當時,導函數的符號如下表所示

 





0



極小

所以的最小值為;         …………………11分
③當時,在上導函數,所以上遞減,
所以的最小值為      ……………13分

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題12分)
已知函數
(1)判斷函數上的單調性;
(2)是否存在實數,使曲線在點處的切線與軸垂直?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
 (Ⅰ)若時,函數在其定義域上是增函數,求b的取值范圍;
 (Ⅱ)在(Ⅰ)的結論下,設函數的最小值;
 (Ⅲ)設函數的圖象C1與函數的圖象C2交于PQ,過線段PQ的中點Rx軸的垂線分別交C1C2于點MN,問是否存在點R,使C1在M處的切線與C2N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知的圖像在點處的切線與直線平行.
(1)求a,b滿足的關系式;
(2)若上恒成立,求a的取值范圍;
(3)證明:      (

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)設函數
(1)求證:的導數
(2)若對任意都有求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為奇函數,且處取得極大值2.
(1)求函數的解析式;
(2)記,求函數的單調區間。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(I)判斷函數的奇偶性并證明;
(II)若,證明:函數在區間上是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分15分)已知函數上為增函數,且,為常數,.
(Ⅰ)求的值;
(Ⅱ)若上為單調函數,求m的取值范圍;
(Ⅲ)設,若在上至少存在一個,使得成立,求的m取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的單調區間;
(2)若 恒成立,試確定實數的取值范圍;
(3)證明:

查看答案和解析>>

同步練習冊答案