中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數,
(1)當時,函數取得極值,求的值;
(2)當時,求函數在區間[1,2]上的最大值;
(3)當時,關于的方程有唯一實數解,求實數的值.
(1);(2)時,取最大值;(3)

試題分析:(1)先求出,因為當時,函數取得極值,所以,從而求出;(2)根據判斷函數在區間[1,2]上的單調性,從而判斷出最大值點,求出最大值;(3)由題意可知,方程有唯一實數解,所以有唯一實數解,設,則函數圖像與軸有且只有一個交點,根據導數判斷函數的單調性,可知函數存在極小值即為最小值,最小值為,從中求出
試題解析:
(1)的定義域為,所以.因為當時,函數取得極值,所以,所以.經檢驗,符合題意.
(2),令
因為,所以,即在[1,2]上單調遞增,
所以時,取最大值
(3)因為方程有唯一實數解,
所以有唯一實數解,
,則,
,因為,
所以(舍去),,
時,上單調遞減,
時,,上單調遞增,
所以當時,取最小值,則  即,
所以,因為,所以(*),設函數,
因為當時,是增函數,所以至多有一解.
因為,所以方程(*)的解為,
,解得
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,某自來水公司要在公路兩側排水管,公路為東西方向,在路北側沿直線排水管,在路南側沿直線排水管(假設水管與公路的南,北側在一條直線上且水管的大小看作為一條直線),現要在矩形區域ABCD內沿直線EF將接通.已知AB = 60m,BC = 60m,公路兩側排管費用為每米1萬元,穿過公路的EF部分的排管費用為每米2萬元,設EF與AB所成角為.矩形區域內的排管費用為W.

(1)求W關于的函數關系式;
(2)求W的最小值及相應的角

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數(其中是實數).
(Ⅰ)求的單調區間;
(Ⅱ)若,且有兩個極值點,求的取值范圍.
(其中是自然對數的底數)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,點為一定點,直線分別與函數的圖象和軸交于點,,記的面積為.
(1)當時,求函數的單調區間;
(2)當時, 若,使得, 求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(I)求函數的單調遞減區間;
(II)若上恒成立,求實數的取值范圍;
(III)過點作函數圖像的切線,求切線方程

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數,.
(1)當時,函數處有極小值,求函數的單調遞增區間;
(2)若函數有相同的極大值,且函數在區間上的最大值為,求實數的值(其中是自然對數的底數).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數,其中.
(1)若,求的最小值;
(2)如果在定義域內既有極大值又有極小值,求實數的取值范圍;
(3)是否存在最小的正整數,使得當時,不等式恒成立.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數為自然對數的底數).
(Ⅰ)求函數的單調區間;
(Ⅱ)當時,若對任意的恒成立,求實數的值;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點,是函數圖象上不同于的一點.有如下結論:
①存在點使得是等腰三角形;
②存在點使得是銳角三角形;
③存在點使得是直角三角形.
其中,正確的結論的個數為(    )
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案