已知函數(shù)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間及
的取值范圍;
(Ⅱ)若函數(shù)
有兩個極值點(diǎn)
求
的值.
(I)
的增區(qū)間為
和
,減區(qū)間為
,
或
;(II)
.
解析試題分析:(I)求單調(diào)區(qū)間先求導(dǎo)
,
,解得
,
再令
解得
,進(jìn)而得
的增區(qū)間為
和
,減區(qū)間為
.
(II)函數(shù)極值點(diǎn)即為導(dǎo)數(shù)零點(diǎn)得
,因為![]()
即![]()
解得
(舍)或
.
試題解析:(I)
,因為有極值點(diǎn),所以
,解得
,
解得
,所以
的增區(qū)間為
和
,減區(qū)間為
.
(II)由(I)知
,所以![]()
![]()
![]()
,
解得,
(舍)或
.
考點(diǎn):1.含參函數(shù)的單調(diào)區(qū)間、參數(shù)的取值范圍、在特定條件下參數(shù)的取值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若
,求函數(shù)
的極值,并指出是極大值還是極小值;
(Ⅱ)若
,求證:在區(qū)間
上,函數(shù)
的圖像在函數(shù)
的圖像的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)
為定義域
上的單調(diào)函數(shù),且存在區(qū)間
(其中
,使得當(dāng)
時,
的取值范圍恰為
,則稱函數(shù)
是
上的正函數(shù),區(qū)間
叫做函數(shù)的等域區(qū)間.
已知
是
上的正函數(shù),求
的等域區(qū)間;
試探求是否存在
,使得函數(shù)
是
上的正函數(shù)?若存在,請求出實數(shù)
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若函數(shù)
與
的圖象在公共點(diǎn)P處有相同的切線,求實數(shù)
的值及點(diǎn)P的坐標(biāo);
(2)若函數(shù)
與
的圖象有兩個不同的交點(diǎn)M、N,求實數(shù)
的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)判斷函數(shù)
在
上的單調(diào)性,并用定義加以證明;
(Ⅱ)若對任意
,總存在
,使得
成立,求實數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
(
為常數(shù))的圖象過原點(diǎn),且對任意
總有
成立;
(1)若
的最大值等于1,求
的解析式;
(2)試比較
與
的大小關(guān)系.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com