已知函數(shù)
在
時取得最大值4.
(1)求
的最小正周期;
(2)求
的解析式;
(3)若
,求
的值域.
(1)
;(2)
;(3)
.
解析試題分析:(1)直接利用正弦函數(shù)的周期公式,求f(x)的最小正周期;
(2)利用函數(shù)的最值求出A,通過函數(shù)經(jīng)過的特殊點(diǎn),求出φ,然后求f(x)的解析式;
(3)通過
,求出相位的范圍,利用正弦函數(shù)的值域直接求f(x)的值域..
試題解析:解:(1)![]()
,![]()
![]()
(3)
時,![]()
![]()
![]()
的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1a/0/ysgkh.png" style="vertical-align:middle;" />
考點(diǎn):1.由y=Asin(ωx+φ)的部分圖象確定其解析式;2.三角函數(shù)的周期性及其求法.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
為常數(shù)且![]()
(1)當(dāng)
時,求
;
(2)若
滿足
,但
,則稱
為
的二階周期點(diǎn).證明函數(shù)
有且僅有兩個二階周期點(diǎn),并求二階周期點(diǎn)
;
(3)對于(2)中的
,設(shè)
,記
的面積為
,求
在區(qū)間
上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)討論函數(shù)
的單調(diào)性;
(2)若
時,關(guān)于
的方程
有唯一解,求
的值;
(3)當(dāng)
時,證明: 對一切
,都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某通訊公司需要在三角形地帶
區(qū)域內(nèi)建造甲、乙兩種通信信號加強(qiáng)中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域
內(nèi),乙中轉(zhuǎn)站建在區(qū)域
內(nèi).分界線
固定,且
=
百米,邊界線
始終過點(diǎn)
,邊界線
滿足
.
設(shè)
(
)百米,
百米.![]()
(1)試將
表示成
的函數(shù),并求出函數(shù)
的解析式;
(2)當(dāng)
取何值時?整個中轉(zhuǎn)站的占地面積
最小,并求出其面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在
上的函數(shù)
,如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的一個上界.已知函數(shù)
,
.
(1)若函數(shù)
為奇函數(shù),求實(shí)數(shù)
的值;
(2)在(1)的條件下,求函數(shù)
在區(qū)間
上的所有上界構(gòu)成的集合;
(3)若函數(shù)
在
上是以3為上界的有界函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2x-
,x∈(0,1].
(1)當(dāng)a=-1時,求函數(shù)y=f(x)的值域;
(2)若函數(shù)y=f(x)在x∈(0,1]上是減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com