中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本題15分)已知函數圖象的對稱中心為,且的極小值為.
(1)求的解析式;
(2)設,若有三個零點,求實數的取值范圍;
(3)是否存在實數,當時,使函數
在定義域[a,b] 上的值域恰為[a,b],若存在,求出k的范圍;若不存在,說明理由.


解:(1)   …………………………………………4分
(2) ……………………7分
(3) ,
①當時,在上單調減,

…………………9分
 

…………………11分

上不單調時,



     …………………14分
綜上得:       …………………15分

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若上是增函數,求實數的取值范圍;
(2)若的極值點,求上的最小值和最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)已知函數f(x)=x3+mx2+nx-2的圖象過點(-1,-6),且函數g(x)=+6x的圖象關于y軸對稱.
(1)求m、n的值及函數y=f(x)的單調區間;(6分)
(2)若a>0,求函數y=f(x)在區間(a-1,a+1)內的極值.(6分)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中
在x=1處取得極值,求a的值;
的單調區間;
(Ⅲ)若的最小值為1,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若,函數上既能取到極大值,又能取到極小值,求的取值范圍;
(2)當時,對任意的恒成立,求的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數=.
(1)求函數在區間上的值域T;
(2)是否存在實數,對任意給定的集合T中的元素t,在區間上總存在兩個不同的,使得成立.若存在,求出的取值范圍;若不存在,請說明理由;
(3
  

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求在點處的切線方程;
(2)若存在,使成立,求的取值范圍;
(3)當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題14分)
線的斜率是-5。
(Ⅰ)求實數b、c的值;
(Ⅱ)求f(x)在區間[-1,2]上的最大值;
(Ⅲ)對任意給定的正實數a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數為奇函數,其圖象在點處的切線與直線垂直,導函數的最小值為
(Ⅰ)求的值;(Ⅱ)求函數的單調遞增區間.
(Ⅲ)求函數上的最大值和最小值

查看答案和解析>>

同步練習冊答案