已知函數(shù)
.
(1)當(dāng)
時(shí),畫出函數(shù)
的簡(jiǎn)圖,并指出
的單調(diào)遞減區(qū)間;
(2)若函數(shù)
有4個(gè)零點(diǎn),求a的取值范圍.
(1)函數(shù)
的簡(jiǎn)圖如下圖所示,
的單調(diào)遞減區(qū)間為
和
;![]()
(2)
.
解析試題分析: (1)將
代入解析式,然后去掉絕對(duì)值,得一個(gè)兩段都為二次函數(shù)的分段函數(shù):
,據(jù)此可畫出圖象,由圖象可得
的單調(diào)遞減區(qū)間.
(2)由
,得
,這樣問題轉(zhuǎn)化為曲線
與直線
有4個(gè)不同交點(diǎn),由(1)題中的圖像可得a的取值范圍.
試題解析:(1)當(dāng)
時(shí),
,![]()
由圖可知,
的單調(diào)遞減區(qū)間為
和
. 6分
(2)由
,得
,
∴曲線
與直線
有4個(gè)不同交點(diǎn),
∴根據(jù)(1)中圖像得
. 12分
考點(diǎn):1、函數(shù)的圖象;2、函數(shù)的單調(diào)區(qū)間;3、函數(shù)的零點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
湖南省環(huán)保研究所對(duì)長(zhǎng)沙市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)
與時(shí)刻x的關(guān)系為
,其中a是與氣象有關(guān)的參數(shù),且
,若用每天
的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作
.
(Ⅰ)令
,求t的取值范圍;
(Ⅱ)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的圖象分別與
軸、
軸交于
兩點(diǎn),且
,函數(shù)
,當(dāng)
滿足不等式
,時(shí),求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某建筑公司要在一塊寬大的矩形地面(如圖所示)上進(jìn)行開發(fā)建設(shè),陰影部分為一公共設(shè)施建設(shè)不能開發(fā),且要求用欄柵隔開(欄柵要求在一直線上),公共設(shè)施邊界為曲線
的一部分,欄柵與矩形區(qū)域的邊界交于點(diǎn)
,交曲線于點(diǎn)
,設(shè)
.![]()
(1)將△
(
為坐標(biāo)原點(diǎn))的面積
表示成
的函數(shù)
;
(2)若在
處,
取得最小值,求此時(shí)
的值及
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(a,b均為正常數(shù)).
(1)求證:函數(shù)
在
內(nèi)至少有一個(gè)零點(diǎn);
(2)設(shè)函數(shù)在
處有極值,
①對(duì)于一切
,不等式
恒成立,求
的取值范圍;
②若函數(shù)f(x)在區(qū)間
上是單調(diào)增函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
:
(1)若函數(shù)在區(qū)間
上存在零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)問:是否存在常數(shù)
,當(dāng)
時(shí),
的值域?yàn)閰^(qū)間
,且
的長(zhǎng)度為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)計(jì)算
的值,據(jù)此提出一個(gè)猜想,并予以證明;
(2)證明:除點(diǎn)(2,2)外,函數(shù)
的圖像均在直線
的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求曲線
在原點(diǎn)處的切線方程;
(Ⅱ)當(dāng)
時(shí),討論函數(shù)
在區(qū)間
上的單調(diào)性;
(Ⅲ)證明不等式
對(duì)任意
成立.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com