在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為
(
,
為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心在極軸上,且經(jīng)過極點的圓.已知曲線C1上的點M(1,
)對應(yīng)的參數(shù)j=
,曲線C2過點D(1,
).
(I)求曲線C1,C2的直角坐標(biāo)方程;
(II)若點A(r1,q),B(r2,q+
)在曲線C1上,求
的值.
(1)曲線C1的方程為
,曲線
的方程為
;(2)
.
解析試題分析:本題主要考查直角坐標(biāo)系與極坐標(biāo)系之間的轉(zhuǎn)化、參數(shù)方程與普通方程的互化,考查學(xué)生的轉(zhuǎn)化能力和計算能力.第一問,利用參數(shù)方程和普通方程的互化公式得到曲線
的方程,先設(shè)出曲線
的普通方程,將點
轉(zhuǎn)化為直角坐標(biāo)代入所設(shè)的曲線
的方程中,得到
的值,即得到曲線
的直角坐標(biāo)方程;第二問,因為點
在曲線
上,所以代入到
的方程中,得到2個表達(dá)式,代入到所求的式子中即可.
試題解析:(I)將
及對應(yīng)的參數(shù)
,
代入
,得
,
即
,
所以曲線C1的方程為
.
設(shè)圓
的半徑為
,由題意圓
的方程為
,(或
).
將點
代入
,得
,即
,
(或由
,得
,代入
,得
),
所以曲線
的方程為
,或
.
(Ⅱ)因為點
,
在曲線
上,
所以
,
,
所以
.
考點:1.參數(shù)方程與普通方程的互化;2.極坐標(biāo)與直角坐標(biāo)的互化.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以為極點,軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)寫出直線的普通方程與圓的直角坐標(biāo)方程;
(2)由直線上的點向圓引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C的極坐標(biāo)方程為ρ=4cos θ,以極點為原點,極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為
(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)曲線C與直線l相交于P,Q兩點,以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線
的參數(shù)方程為
(t為參數(shù)),曲線C的參數(shù)方程為
(
為參數(shù)).
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為
,判斷點P與直線
的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求點Q到直線
的距離的最小值與最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
的極坐標(biāo)方程是
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線
經(jīng)過伸縮變換
得到曲線
,設(shè)
為曲線
上任一點,求
的最小值,并求相應(yīng)點
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系
中,已知圓
的參數(shù)方程
(
為參數(shù)),以
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓
的極坐標(biāo)方程;
(Ⅱ)直線
,射線
與圓
的交點為
,與直線
的交點為
,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系中,直線
的參數(shù)方程是
(
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸,建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
.
(Ⅰ)求直線
的極坐標(biāo)方程;
(Ⅱ)若直線
與曲線
相交于
兩點,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為非零常數(shù),
為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,直線
的方程為
.
(Ⅰ)求曲線
的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數(shù)
,使得直線
與曲線
有兩個不同的公共點
,且
(其中
為坐標(biāo)原點)?若存在,請求出;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系
中,以O(shè)為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為
,曲線
的參數(shù)方程為
,(
為參數(shù),
)。
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)當(dāng)C1與C2有兩個公共點時,求實數(shù)
的取值范圍。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com