已知
,設(shè)函數(shù)![]()
(1)若![]()
,求函數(shù)
在
上的最小值
(2)判斷函數(shù)
的單調(diào)性
(1)1(2)當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間是![]()
當(dāng)
時(shí),函 數(shù)
的單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是![]()
解析試題分析:(1)若
,則![]()
所以,![]()
所以,
在
上單調(diào)遞減,在
上單調(diào)遞增。
故 當(dāng)
時(shí),函數(shù)
取得最小值,最小值是![]()
(2)由題意可知,函數(shù)
的定義域是![]()
又![]()
當(dāng)
時(shí),
,函數(shù)
在
上單調(diào)遞增;
當(dāng)
時(shí),
令
解得,
,此時(shí)函數(shù)
是單調(diào)遞增的
令
解得,
,此時(shí)函數(shù)
是單調(diào)遞減的
綜上所述,當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間是![]()
當(dāng)
時(shí),函 數(shù)
的單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是![]()
考點(diǎn):函數(shù)單調(diào)性與最值
點(diǎn)評(píng):函數(shù)在閉區(qū)間上的最值出現(xiàn)在極值點(diǎn)或區(qū)間端點(diǎn)處,利用導(dǎo)數(shù)求單調(diào)區(qū)間時(shí)若含有參數(shù),一般都需要對(duì)參數(shù)的范圍分情況討論,當(dāng)參數(shù)范圍不同時(shí),單調(diào)區(qū)間也不同
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
的圖象經(jīng)過(guò)點(diǎn)
,且在
處的切線方程是
.
(I)求
的解析式;
(Ⅱ)求
的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)
,
.
(1)求
的極值點(diǎn);
(2)若
對(duì)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
,
(1)若函數(shù)
在
處的切線方程為
,求實(shí)數(shù)
,
的值;
(2)若
在其定義域內(nèi)單調(diào)遞增,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求證:函數(shù)
在
上單調(diào)遞增;
(Ⅱ)若函數(shù)
有三個(gè)零點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
(I)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(II)在區(qū)間
內(nèi)至少存在一個(gè)實(shí)數(shù)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
為實(shí)數(shù),![]()
(1)求導(dǎo)數(shù)
;
(2)若
,求
在[-2,2] 上的最大值和最小值;
(3)若
在
和
上都是遞增的,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知a為實(shí)數(shù),![]()
(1)求導(dǎo)數(shù)
;
(2)若
,求
在[-2,2] 上的最大值和最小值;
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com