中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本題滿分14分)
已知函數(),.
(Ⅰ)當時,解關于的不等式:
(Ⅱ)當時,記,過點是否存在函數圖象的切線?若存在,有多少條?若不存在,說明理由;
(Ⅲ)若是使恒成立的最小值,對任意
試比較的大小(常數).

(I). (Ⅱ)這樣的切線存在,且只有一條。
(Ⅲ)以
=.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知函數,函數的最小值為
(1)當時,求
(2)是否存在實數同時滿足下列條件:①;②當的定義域為 時,值域為?若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(10分)求下列函數的導數
      ②

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分) 
已知a∈R,函數f(x)=4x3-2ax+a.
(1)求f(x)的單調區間;
(2)證明:當0≤x≤1時,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,函數.
(1)求的極值;
(2)若上為單調遞增函數,求的取值范圍;
(3)設,若在是自然對數的底數)上至少存在一個,使得成立,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若函數處與直線相切;
①求實數的值;②求函數上的最大值;
(2)當時,若不等式對所有的都成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
已知,…,.
(Ⅰ)請寫出的表達式(不需證明);
(Ⅱ)求的極小值
(Ⅲ)設的最大值為的最小值為,試求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數(Ⅰ) 當時,求函數的極值;
(Ⅱ)當時,討論函數的單調性.     (Ⅲ)(理科)若對任意及任意,恒有 成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若上是增函數,求實數的取值范圍;
(2)若的極值點,求上的最小值和最大值.

查看答案和解析>>

同步練習冊答案