已知橢圓
的短半軸長為
,動(dòng)點(diǎn)![]()
在直線
(
為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以
為直徑且被直線
截得的弦長為
的圓的方程;
(3)設(shè)
是橢圓的右焦點(diǎn),過點(diǎn)
作
的垂線與以
為直徑的圓交于點(diǎn)
,
求證:線段
的長為定值,并求出這個(gè)定值.
(1)
,(2)
,(3)
.
解析試題分析:(1)求橢圓標(biāo)準(zhǔn)方程,基本方法為待定系數(shù)法.由題意得
及
,因此可解得
,
.(2)圓的弦長問題,通常化為直角三角形,即半徑、半弦長、圓心到直線距離構(gòu)成一個(gè)直角三角形. 圓心為
,圓心到直線
的距離
,因此
,
,所求圓的方程為
. (3)涉及定值問題,一般通過計(jì)算,以算代證.本題有兩種算法,一是利用射影定理,只需求出點(diǎn)
在
上射影
的坐標(biāo),即由兩直線方程
得
,因此
.二是利用向量坐標(biāo)表示,即設(shè)
,根據(jù)兩個(gè)垂直,消去參數(shù)t,確定
.
試題解析:(1)由點(diǎn)
在直線
上,得
,
故
, ∴
. 從而
. 2分
所以橢圓方程為
. 4分
(2)以
為直徑的圓的方程為
.
即
. 其圓心為
,半徑
. 6分
因?yàn)橐?img src="http://thumb.zyjl.cn/pic5/tikupic/3b/a/pjf862.png" style="vertical-align:middle;" />為直徑的圓被直線
截得的弦長為
,
所以圓心到直線
的距離
.
所以
,解得
.所求圓的方程為
. 9分
(3)方法一:由平幾知:
,
直線![]()
,直線![]()
,
由
得
.
∴
.
所以線段
的長為定值
. 13分
方法二:設(shè)
,
則
.
.
又
.
所以,
為定值. 13分
考點(diǎn):橢圓方程,圓的弦長,定值問題
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
,圓C:
與橢圓E:
有一個(gè)公共點(diǎn)
,
分別是橢圓的左、右焦點(diǎn),直線
與圓C相切.![]()
(1)求m的值與橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
在雙曲線
上,且雙曲線的一條漸近線的方程是
.
(1)求雙曲線
的方程;
(2)若過點(diǎn)
且斜率為
的直線
與雙曲線
有兩個(gè)不同交點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)設(shè)(2)中直線
與雙曲線
交于
兩個(gè)不同點(diǎn),若以線段
為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知A、B、C是長軸長為4的橢圓E上的三點(diǎn),點(diǎn)A是長軸的一個(gè)端點(diǎn),BC過橢圓中心O,且
,|BC|=2|AC|.![]()
(1)求橢圓E的方程;
(2)在橢圓E上是否存點(diǎn)Q,使得
?若存在,有幾個(gè)(不必求出Q點(diǎn)的坐標(biāo)),若不存在,請說明理由.
(3)過橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作
的兩條切線,切點(diǎn)分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,直線
與
相交于
、
兩點(diǎn),
與
軸、
軸分別相交于
、
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)若直線
的方程為
,求
外接圓的方程;
(2)判斷是否存在直線
,使得
、
是線段
的兩個(gè)三等分點(diǎn),若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線關(guān)于
軸對稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)
、
、
均在拋物線上.![]()
(1)寫出該拋物線的方程及其準(zhǔn)線方程;
(2)當(dāng)
與
的斜率存在且傾斜角互補(bǔ)時(shí),求
的值及直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
知橢圓
的兩焦點(diǎn)
、
,離心率為
,直線
:
與橢圓
交于
兩點(diǎn),點(diǎn)
在
軸上的射影為點(diǎn)
.![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)求直線
的方程,使
的面積最大,并求出這個(gè)最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的右焦點(diǎn)為
,點(diǎn)
在橢圓上.![]()
(1)求橢圓的方程;
(2)點(diǎn)
在圓
上,且
在第一象限,過
作圓
的切線交橢圓于
,
兩點(diǎn),問:△
的周長是否為定值?如果是,求出定值;如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓C的方程為
+y2=1,A、B是四條直線x=±2,y=±1所圍成的矩形的兩個(gè)頂點(diǎn).![]()
(1)設(shè)P是橢圓C上任意一點(diǎn),若
=m
+n
,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩個(gè)動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com