已知函數
,其中
.
(Ⅰ)若
,求函數
的極值點;
(Ⅱ)若
在區間
內單調遞增,求實數
的取值范圍.
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導函數.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
(2)解關于x的方程f(x)=|f′(x)|; ?
(3)設函數g(x)=
,求g(x)在x∈[2,4]時的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知向量m=(ex,ln x+k),n=(1,f(x)],m∥n(k為常數),曲線y=f(x)在點(1,f(1))處的切線與y軸垂直,F(x)=xexf′(x).
(1)求k的值及F(x)的單調區間;
(2)已知函數g(x)=-x2+2ax(a為正實數),若對于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
,其中
.
(1)當
時,求函數
在
處的切線方程;
(2)若函數
在區間(1,2)上不是單調函數,試求
的取值范圍;
(3)已知
,如果存在
,使得函數![]()
在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數
.
(Ⅰ)若
在x=
處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數
的單調區間;
(Ⅲ)若函數
的圖象與x軸交于A,B兩點,線段AB中點的橫坐標為
,證明
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com