中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導函數.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
(2)解關于x的方程f(x)=|f′(x)|; ?
(3)設函數g(x)=,求g(x)在x∈[2,4]時的最小值.

(1)a(2) x=1或x=-(1+2a) (3)4a+5

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1處的切線方程.
(2)若不等式f(x)≤0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)若存在單調遞減區間,求實數的取值范圍;
(2)若,求證:當時,恒成立;
(3)利用(2)的結論證明:若,則.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知x=3是函數f(x)=aln(1+x)+x2-10x的一個極值點.
(1)求a
(2)求函數f(x)的單調區間;
(3)若直線yb與函數yf(x)的圖象有3個交點,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 
(1)若,求曲線處的切線方程;
(2)若對任意的,都有恒成立,求的最小值;
(3)設,若為曲線的兩個不同點,滿足,且,使得曲線處的切線與直線AB平行,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

f(x)=a(x-5)2+6ln x,其中a∈R,曲線yf(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數f(x)的單調區間與極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=x3x2+6xa.
(1)對于任意實數xf′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖像在點處的切線斜率為10.
(1)求實數的值;
(2)判斷方程根的個數,并證明你的結論;
(21)探究: 是否存在這樣的點,使得曲線在該點附近的左、右兩部分分別位于曲線在該點處切線的兩側? 若存在,求出點A的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(Ⅰ)若,求函數的極值點;
(Ⅱ)若在區間內單調遞增,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案