中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

設(shè)函數(shù),其中為常數(shù)。
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。

(Ⅰ)函數(shù)在定義域上單調(diào)遞增;(Ⅱ)當且僅當有極值點; 當時,有惟一最小值點;當時,有一個極大值點和一個極小值點

解析試題分析:(Ⅰ)函數(shù)在定義域上的單調(diào)性的方法,一是利用定義,二是利用導(dǎo)數(shù),此題既有代數(shù)函數(shù)又有對數(shù)函數(shù),顯然利用導(dǎo)數(shù)判斷,只需對求導(dǎo),判斷的符號即可;(Ⅱ)求的極值,只需對求導(dǎo)即可,利用導(dǎo)數(shù)求函數(shù)的極值一般分為四個步驟:①確定函數(shù)的定義域;②求出;③令,列表;④確定函數(shù)的極值.此題由(Ⅰ)得,當時,函數(shù)無極值點,只需討論的情況,解的根,討論在范圍內(nèi)根的個數(shù),從而確定的取值范圍及的極值點,值得注意的是,求出的根時,忽略討論根是否在定義域內(nèi),而出錯.
試題解析:(Ⅰ)由題意知,的定義域為  ∴當時,,函數(shù)在定義域上單調(diào)遞增.
(Ⅱ)①由(Ⅰ)得,當時,函數(shù)無極值點,②時,有兩個相同的解,但當時,,當時,時,函數(shù)上無極值點,③當時,有兩個不同解,時,,而,此時 在定義域上的變化情況如下表:

<sup id="8gotj"><font id="8gotj"><dfn id="8gotj"></dfn></font></sup>
    • <track id="8gotj"><rp id="8gotj"></rp></track>
      <li id="8gotj"><form id="8gotj"></form></li>

          <mark id="8gotj"></mark>

          <tt id="8gotj"><big id="8gotj"><tfoot id="8gotj"></tfoot></big></tt><rp id="8gotj"></rp>
          <sup id="8gotj"></sup>










          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)當時,求函數(shù)的單調(diào)區(qū)間;
          (2)求證:當時,對所有的都有成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分13分)已知函數(shù).
          (1)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍.
          (2)記函數(shù),若的最小值是,求函數(shù)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題12分)設(shè)函數(shù)
          (1)求的周期和對稱中心;
          (2)求上值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求的延長線上,的延長線上,且對角線點.已知米,米。

          (1)設(shè)(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
          (2)若(單位:米),則當的長度分別是多少時,花壇的面積最大?并求出最大面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè),曲線在點處的切線與直線垂直.
          (1)求的值;
          (2) 若恒成立,求的范圍.
          (3)求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)
          (1) 當時,求的單調(diào)區(qū)間;
          (2) 若當時,恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)若處的切線方程;
          (2)若在區(qū)間上恰有兩個零點,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知是實數(shù),函數(shù),分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱在區(qū)間上單調(diào)性一致.
          (Ⅰ)設(shè),若函數(shù)在區(qū)間上單調(diào)性一致,求實數(shù)的取值范圍;
          (Ⅱ)設(shè),若函數(shù)在以為端點的開區(qū)間上單調(diào)性一致,求的最大值.

          查看答案和解析>>