已知函數f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數f(x)的單調區間;
(2)若函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數g(x)=x3+x2
(f′(x)是f(x)的導函數)在區間(t,3)上總不是單調函數,求m的取值范圍;
(3)求證:
×…×
<
(n≥2,n∈N*)
科目:高中數學 來源: 題型:解答題
已知函數
,
,
圖象與
軸異于原點的交點M處的切線為
,
與
軸的交點N處的切線為
, 并且
與
平行.
(1)求
的值;
(2)已知實數t∈R,求
的取值范圍及函數
的最小值;
(3)令
,給定
,對于兩個大于1的正數
,存在實數
滿足:
,
,并且使得不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某商場銷售某種商品的經驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關系式y=
+10(x-6)2,其中3<x<6,a為常數.已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=-aln x+
+x(a≠0),
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線x-2y=0垂直,求實數a的值;
(2)討論函數f(x)的單調性.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某地政府為科技興市,欲在如圖所示的矩形ABCD的非農業用地中規劃出一個高科技工業園區(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個底邊),已知
其中AF是以A為頂點、AD為對稱軸的拋物線段.試求該高科技工業園區的最大面積.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
學校操場邊有一條小溝,溝沿是兩條長150米的平行線段,溝寬
為2米,,與溝沿垂直的平面與溝的交線是一段拋物線,拋物線的頂點為
,對稱軸與地面垂直,溝深2米,溝中水深1米.
(Ⅰ)求水面寬;
(Ⅱ)如圖1所示形狀的幾何體稱為柱體,已知柱體的體積為底面積乘以高,求溝中的水有多少立方米?![]()
(Ⅲ)現在學校要把這條水溝改挖(不準填土)成截面為等腰梯形的溝,使溝的底面與地面平行,溝深不變,兩腰分別與拋物線相切(如圖2),問改挖后的溝底寬為多少米時,所挖的土最少?![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
(
為常數),其圖象是曲線
.
(1)當
時,求函數
的單調減區間;
(2)設函數
的導函數為
,若存在唯一的實數
,使得
與
同時成立,求實數
的取值范圍;
(3)已知點
為曲線
上的動點,在點
處作曲線
的切線
與曲線
交于另一點
,在點
處作曲線
的切線
,設切線
的斜率分別為
.問:是否存在常數
,使得
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com