中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數
(1)解不等式
(2)對于任意的,不等式恒成立,求的取值范圍.

(1);(2).

解析試題分析:本題考查絕對值不等式的解法和不等式的恒成立問題,考查學生的分類討論思想和轉化能力.第一問,利用零點分段法進行分類求解;第二問,利用函數的單調性求出最大值證明恒成立問題.
試題解析:(1)    3分
解得 ∴不等式解集為          6分
(2),即,        7分
,則      9分
上單調遞減, ;上單調遞增,
∴在,                    11分
時不等式上恒成立           12分
考點:1.絕對值不等式的解法;2.分段函數求最值;3.恒成立問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

求值化簡:
(Ⅰ)
(Ⅱ).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖像在點處的切線方程為.
(Ⅰ)求實數的值;
(Ⅱ)求函數在區間上的最大值;
(Ⅲ)若曲線上存在兩點使得是以坐標原點為直角頂點的直角三角形,且斜邊的中點在軸上,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若函數上是減函數,求實數a的最小值;
(2)若,使成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)求函數的單調區間;
(2)當時,是否存在整數,使不等式恒成立?若存在,求整數的值;若不存在,請說明理由;
(3)關于的方程上恰有兩個相異實根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(1)當0≤x≤200時,求函數v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值(精確到1輛/小時).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數.若的定義域為,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是二次函數,不等式的解集是,且在區間上的最大值為12.
(1)求的解析式;
(2)設函數上的最小值為,求的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求出所有的函數使得對于所有都能被整除.

查看答案和解析>>

同步練習冊答案