(本小題14分)已知函數(shù)
,
(1)判斷此函數(shù)的奇偶性;(2)判斷函數(shù)的單調(diào)性,并加以證明.(3)解不等式![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若
,求
的單調(diào)遞增區(qū)間;
(2)當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的最小值.
(Ⅱ)若對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)討論函數(shù)
的單調(diào)區(qū)間;
(2)如果存在
,使函數(shù)
在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)若定義在
上的函數(shù)
同時(shí)滿足下列三個(gè)條件:
①對(duì)任意實(shí)數(shù)
均有
成立;
②
; ③當(dāng)
時(shí),都有
成立。
(1)求
,
的值;
(2)求證:
為
上的增函數(shù)
(3)求解關(guān)于
的不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知
,且
.
(1)求實(shí)數(shù)
的值;
(2)求函數(shù)
的單調(diào)遞增區(qū)間及最大值,并指出取得最大值時(shí)的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知![]()
(1)求函數(shù)
在[t,t+2](t>0)上的最小值
(2)對(duì)一切
恒成立,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)镽的函數(shù)
是奇函數(shù)。
(1)求
的值;
(2)用定義證明
在![]()
上為減函數(shù);
(3)若對(duì)于任意
,不等式
恒成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,且
.
(Ⅰ)判斷
的奇偶性并說明理由;
(Ⅱ)判斷
在區(qū)間
上的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若在區(qū)間
上,不等式
恒成立,試確定實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com