已知函數(shù)
,
(其中
,
),且函數(shù)
的圖象在 點(diǎn)
處的切線與函數(shù)
的圖象在點(diǎn)
處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若
,滿足
,求實(shí)數(shù)m的取值范圍;
(1)
,
(2)![]()
解析試題分析:解:(Ⅰ)∵
,∴
,
則
在點(diǎn)
處切線的斜率
,切點(diǎn)
,
則
在點(diǎn)
處切線方程為
, 2分
又
,∴
,
則
在點(diǎn)
處切線的斜率
,切點(diǎn)
,
則
在點(diǎn)
處切線方程為
, 4分
由
解得
,
. 6分
(Ⅱ)由
得
,故
在
上有解,
令
,只需
. 8分
①當(dāng)
時,
,所以
; 10分
②當(dāng)
時,∵
,
∵
,∴
,
,∴
,
故
,即函數(shù)
在區(qū)間
上單調(diào)遞減,
所以
,此時
. 13分
綜合①②得實(shí)數(shù)m的取值范圍是
. 14分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:解決的關(guān)鍵是對于導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系的運(yùn)用,屬于基礎(chǔ)題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
在區(qū)間
上是增函數(shù),在區(qū)間
,
上是減函數(shù),又![]()
(1)求
的解析式;
(2)若在區(qū)間![]()
上恒有
成立,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,且
。
(1)若函數(shù)
在
處的切線與
軸垂直,求
的極值。
(2)若函數(shù)
在
,求實(shí)數(shù)a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
文科設(shè)函數(shù)
。(Ⅰ)若函數(shù)
在
處與直線
相切,①求實(shí)數(shù)
,b的值;②求函數(shù)
上的最大值;(Ⅱ)當(dāng)
時,若不等式
對所有的
都成立,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1) 求
的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù)
,使得對任意的
,當(dāng)
時恒有
成立.若存在,求
的范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
.
(I)若函數(shù)
在區(qū)間(1,2)上不是單調(diào)函數(shù),試求
的取值范圍;
(II)已知
,如果存在
,使得函數(shù)![]()
在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若A,B是函數(shù)f(x)圖象上不同的兩點(diǎn),且直線AB的斜率恒大于1,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com