已知
是定義在
上的偶函數(shù),當(dāng)
時(shí),
。
(1)用分段函數(shù)形式寫出![]()
在
上的解析式;
(2)畫出函數(shù)
的大致圖象;并根據(jù)圖像寫出
的單調(diào)區(qū)間;
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒。已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間t(小時(shí))成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為
,如圖所示。![]()
(1)請(qǐng)寫出從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時(shí),學(xué)生方可進(jìn)教室。那么,從藥物釋放開始,至少需要經(jīng)過多少小時(shí)后,學(xué)生才能回到教室。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
的圖象過點(diǎn)(1,13),圖像關(guān)于直線
對(duì)稱。
(1)求
的解析式。
(2)已知
,
,
① 若函數(shù)
的零點(diǎn)有三個(gè),求實(shí)數(shù)
的取值范圍;
②求函數(shù)
在[
,2]上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知某公司生產(chǎn)某品牌服裝的年固定成本為10萬元,每生產(chǎn)一千件,需要另投入2.7萬元.設(shè)該公司年內(nèi)共生產(chǎn)該品牌服裝
千件并全部銷售完,每千件的銷售收入為
萬元,且
.
(I)寫出年利潤
(萬元)關(guān)于年產(chǎn)量
(千件)的函數(shù)關(guān)系式;
(Ⅱ)年生產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)
已知二次函數(shù)
滿足:
,且
的
解集為![]()
(1)求
的解析式;
(2)設(shè)![]()
,若
在
上的最小值為-4,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分
分)
若函數(shù)
在定義域
內(nèi)某區(qū)間
上是增函數(shù),而
在
上是減函數(shù),
則稱
在
上是“弱增函數(shù)”
(1)請(qǐng)分別判斷
=
,
在
是否是“弱增函數(shù)”,
并簡(jiǎn)要說明理由;
(2)證明函數(shù)
(
是常數(shù)且
)在
上是“弱增函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在
上的函數(shù)
,如果滿足:對(duì)任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.
(1)判斷函數(shù)
是否是有界函數(shù),請(qǐng)寫出詳細(xì)判斷過程;
(2)試證明:設(shè)
,若
在
上分別以
為上界,
求證:函數(shù)
在
上以
為上界;
(3)若函數(shù)
在
上是以3為上界的有界函數(shù),
求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com