中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數(其中).
(1) 當時,求函數的單調區(qū)間和極值;
(2) 當時,函數上有且只有一個零點.
(1)函數的遞減區(qū)間為遞增區(qū)間為極大值為,極小值為;(2)詳見試題解析.

試題分析:(1)先求,解方程,得可能的極值點,列表可得函數的單調區(qū)間和極值;(2).當時,上無零點,故只需證明函數上有且只有一個零點.分利用函數的單調性證明函數上有且只有一個零點.
試題解析:(1)當時,
,得
變化時,的變化如下表:














極大值

極小值

由表可知,函數的遞減區(qū)間為遞增區(qū)間為極大值為,極小值為.                                  6分
(2).當時,上無零點,故只需證明函數上有且只有一個零點.
①若,則當時,上單調遞增.
在上有且只有一個零點.
②若,則上單減,上單增.
上單增,上單增,上有且只有一個零點.
綜上,上有且只有一個零點.                          13分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(Ⅰ)若函數處的切線垂直軸,求的值;
(Ⅱ)若函數在區(qū)間上為增函數,求的取值范圍;
(Ⅲ)討論函數的單調性.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,(其中m為常數).
(1) 試討論在區(qū)間上的單調性;
(2) 令函數.當時,曲線上總存在相異兩點,使得過點處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數
(1)若,求的單調區(qū)間,
(2)當時,,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=alnx,a∈R.
(Ⅰ)當f(x)存在最小值時,求其最小值φ(a)的解析式;
(Ⅱ)對(Ⅰ)中的φ(a),
(ⅰ)當a∈(0,+∞)時,證明:φ(a)≤1;
(ⅱ)當a>0,b>0時,證明:φ′()≤≤φ′().

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的零點所在區(qū)間為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數有且僅有兩個不同的零點,則(  )
A.當時,
B.當時,
C.當時,
D.當時,

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(Ⅰ) 若函數處的切線方程為,求實數的值.
(Ⅱ)當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

,若f(3)="3f" ′(x0),則x0=(   )
A.±1B.±2C.±D.2

查看答案和解析>>

同步練習冊答案