已知函數(shù)
,![]()
.
(Ⅰ)若
,求函數(shù)
在區(qū)間
上的最值;
(Ⅱ)若
恒成立,求
的取值范圍. (注:
是自然對數(shù)的底數(shù))
(Ⅰ) 最大值
;(Ⅱ)
的取值范圍是
.
解析試題分析:(Ⅰ) 討論去掉絕對值,利用導(dǎo)數(shù)求得最值; (Ⅱ) 對
分
,
討論:當(dāng)
時
,
,
恒成立,所以![]()
;當(dāng)
時,對
討論去掉絕對值,分離出
通過求函數(shù)的最值求得
的范圍.
試題解析:(1) 若
,則
.當(dāng)
時,
,
, 所以函數(shù)
在
上單調(diào)遞增;
當(dāng)
時,
,
.
所以函數(shù)
在區(qū)間
上單調(diào)遞減,所以
在區(qū)間[1,e]上有最小值
,又因為
,
,而
,所以
在區(qū)間
上有最大值
.
(2)函數(shù)
的定義域為
. 由
,得
. (*)
(ⅰ)當(dāng)
時,
,
,不等式(*)恒成立,所以![]()
;
(ⅱ)當(dāng)
時,
①當(dāng)
時,由
得
,即
,
現(xiàn)令
, 則
,因為
,所以
,故
在
上單調(diào)遞增,
從而
的最小值為
,因為
恒成立等價于
,所以
;
②當(dāng)
時,
的最小值為
,而
,顯然不滿足題意.
綜上可得,滿足條件的
的取值范圍是
.
考點:絕對值的計算、函數(shù)的最值求法、利用導(dǎo)數(shù)求函數(shù)單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若
試確定函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,且對于任意
,
恒成立,求實數(shù)
的取值范圍;
(Ⅲ)令
若至少存在一個實數(shù)
,使
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
(1)如果
在
處取得最小值
,求
的解析式;
(2)如果
,
的單調(diào)遞減區(qū)間的長度是正整數(shù),試求
和
的值.(注:區(qū)間
的長度為
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,(其中m為常數(shù)).
(1) 試討論
在區(qū)間
上的單調(diào)性;
(2) 令函數(shù)
.當(dāng)
時,曲線
上總存在相異兩點
、
,使得過
、
點處的切線互相平行,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分)已知函數(shù)![]()
(1)若實數(shù)
求函數(shù)
在
上的極值;
(2)記函數(shù)
,設(shè)函數(shù)
的圖像
與
軸交于
點,曲線
在
點處的切線與兩坐標軸所圍成圖形的面積為
則當(dāng)
時,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若
,求
的極大值;
(Ⅱ)若
在定義域內(nèi)單調(diào)遞減,求滿足此條件的實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在點
處的切線方程是x+ y-l=0,其中e為自然對數(shù)的底數(shù),函數(shù)g(x)=1nx- cx+ 1+ c(c>0),對一切x∈(0,+
)均有
恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com