(本題滿分12分)已知函數(shù)
,![]()
(1)若
,求
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),求證:
.
(1)
的增區(qū)間為
,減區(qū)間為
(2)關(guān)鍵證明![]()
解析試題分析:解:(1)
,
![]()
![]()
∵
,∴當(dāng)
時(shí),
,當(dāng)
時(shí),
,
∴
的增區(qū)間為
,減區(qū)間為![]()
(2)令
![]()
則由
解得![]()
∵
在
上增,在
上減
∴當(dāng)
時(shí),
有最小值,![]()
∵
,∴
,
∴
,所以![]()
考點(diǎn):函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系;函數(shù)的導(dǎo)數(shù)與最值的關(guān)系。
點(diǎn)評(píng):求函數(shù)的單調(diào)區(qū)間,是常考點(diǎn),可結(jié)合函數(shù)的導(dǎo)數(shù)來求解。本題第一道小題是第二道小題的鋪墊,解決第二道題可沿著第一道的思路。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共9分)
已知函數(shù)f(x)=
。
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并證明;
(Ⅲ)判斷函數(shù)f(x)在定義域上的單調(diào)性,并用定義證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)
.
(1)判斷該函數(shù)在區(qū)間(2,+∞)上的單調(diào)性,并給出證明;
(2)求該函數(shù)在區(qū)間[3,6]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)已知函數(shù)
(
為常數(shù))是實(shí)數(shù)集
上的奇函數(shù),函數(shù)
是區(qū)間
上的減函數(shù)。
(1)求
在
上的最大值;
(2)若
對(duì)
及
恒成立,求
的取值范圍;
(3)討論關(guān)于
的方程
的根的個(gè)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
設(shè)函數(shù)
,其中
.
( I )若函數(shù)
圖象恒過定點(diǎn)P,且點(diǎn)P在
的圖象上,求m的值;
(Ⅱ)當(dāng)
時(shí),設(shè)
,討論
的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè)
,曲線
上是否存在兩點(diǎn)P、Q,
使△OPQ(O為原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且該三角形斜邊的中點(diǎn)在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)![]()
(1)是否存在實(shí)數(shù)![]()
,使得函數(shù)
的定義域、值域都是
,若存在,則求出
的值,若不存在,請(qǐng)說明理由.
(2)若存在實(shí)數(shù)![]()
,使得函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/23/9/epuwj1.png" style="vertical-align:middle;" />時(shí),值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/da/1/r0vir1.png" style="vertical-align:middle;" /> (
),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
是奇函數(shù),
是偶函數(shù)。
(1)求
的值;
(2)設(shè)
若
對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
為
的導(dǎo)數(shù).
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間和極值;
(2)設(shè)
,是否存在實(shí)數(shù)
,對(duì)于任意的
,存在
,使得
成立?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若
為
的極值點(diǎn),求實(shí)數(shù)
的值;
(Ⅱ)若
在
上為增函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅲ)當(dāng)
時(shí),方程
有實(shí)根,求實(shí)數(shù)
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com