已知函數(shù)![]()
(1)若函數(shù)
在
上為增函數(shù),求實(shí)數(shù)
的取值范圍;
(2)當(dāng)
時(shí),求
在
上的最大值和最小值.
(1)
(2)
,![]()
解析試題分析:(1)由已知得
, 1分
依題意得
對(duì)任意
恒成立
即
對(duì)任意
恒成立, 3分
而
4分
所以
的取值范圍為
5分
(2)當(dāng)
時(shí),
, 6分
令
,得
, 7分
若
時(shí),
,若
時(shí),
,
故
是函數(shù)在區(qū)間
上的唯一的極小值,也是最小值,
即
,而
, 10分
由于
, 12分
則
14分
考點(diǎn):本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,極值,最值等,以及恒成立問(wèn)題的解決.
點(diǎn)評(píng):利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)時(shí),要注意步驟完整,最好列表格進(jìn)行說(shuō)明單調(diào)性、極值、最值等,而且要注意函數(shù)的定義域.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
若存在函數(shù)
使得
恒成立,則稱
是
的一個(gè)“下界函數(shù)”.
(I) 如果函數(shù)
為實(shí)數(shù)
為
的一個(gè)“下界函數(shù)”,求
的取值范圍;
(Ⅱ)設(shè)函數(shù)
試問(wèn)函數(shù)
是否存在零點(diǎn),若存在,求出零點(diǎn)個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,其中
。
(1)若函數(shù)
有極值
,求
的值;
(2)若函數(shù)
在區(qū)間
上為增函數(shù),求
的取值范圍;
(3)證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ) 若存在實(shí)數(shù)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
曲線
在點(diǎn)
處的切線與x軸交點(diǎn)的橫坐標(biāo)為an.
(1)求an;
(2)設(shè)
,求數(shù)到
的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
文科(本小題滿分14分)設(shè)函數(shù)
。(Ⅰ)若函數(shù)
在
處與直線
相切,①求實(shí)數(shù)
,b的值;②求函數(shù)
上的最大值;(Ⅱ)當(dāng)
時(shí),若不等式
對(duì)所有的
都成立,求實(shí)數(shù)m的取值范圍。)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,其圖像在點(diǎn)
處的切線為
.
(1)求
、直線
及兩坐標(biāo)軸圍成的圖形繞
軸旋轉(zhuǎn)一周所得幾何體的體積;
(2)求
、直線
及
軸圍成圖形的面積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com