中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數
(1)當時,①求函數的單調區間;②求函數的圖象在點處的切線方程;
(2)若函數既有極大值,又有極小值,且當時,恒成立,求的取值范圍.
(1)函數的單調遞增區間是:,單調遞減區間是:(1,3);(2).

試題分析:(1)①:當m=2時,可以得到f(x)的具體的表達式,進而求得的表達式,根據即可確定f(x)的單調區間;②:根據①中所得的的表達式,可以得到的值,即切線方程的斜率,在由過(0,0)即可求得f(x)在(0,0)處的切線方程;(2) f(x)即有極大值,又有極小值,說明有兩個不同的零點,在時,恒成立,
說明<36恒成立,
,通過判斷在[0,4m]上的單調性,即可求把 用含m的代數式表示出來,從而建立關于m的不等式.
(1)當m=2時, 1分
①令,解得x=1或x="3"    2分
∴函數的單調遞增區間是:,單調遞減區間是:(1,3)  4分
②∵,∴函數y=f(x)的圖象在點(0,0)處的切線方程為y=3x    6分;
(2)因為函數f(x)既有極大值,又有極小值,則有兩個不同的根,則有
 又     8分
,依題意:即可.
,,
   10分
,又
∴g(x)最大值為   12分,   13分
∴m的取值范圍為       14分..
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數(其中),為f(x)的導函數.
(1)求證:曲線y=在點(1,)處的切線不過點(2,0);
(2)若在區間中存在,使得,求的取值范圍;
(3)若,試證明:對任意恒成立.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

上是減函數,則的最大值是          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.已知函數有兩個零點,且
(1)求的取值范圍;
(2)證明隨著的減小而增大;
(3)證明隨著的減小而增大.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)判斷函數y=f(x)的單調性并求出單調區間.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義在上的單調遞減函數,若的導函數存在且滿足,則下列不等式成立的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數f(x)=1+x-+…+,則下列結論正確的是(  )
A.f(x)在(0,1)上恰有一個零點
B.f(x)在(0,1)上恰有兩個零點
C.f(x)在(-1,0)上恰有一個零點
D.f(x)在(-1,0)上恰有兩個零點

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數f(x)=ln x-f′(-1)x2+3x-4,則f′(1)=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數,則(    ).
A.B.
C.D.

查看答案和解析>>

同步練習冊答案