中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數.
(1)當時,求的極值;(2)當時,討論的單調性;
(3)若對任意的恒有成立,求實數的取值范圍.

(1)極小值,無極大值;(2)參考解析;(3)

解析試題分析:(1)當時.函數f(x)是一個對數函數和分式的和的形式.通過求導可以求出函數的有極小值,但沒極大值.
(2)當時.通過求導可得導函數的兩個零點,在定義域上分別對兩個零點的大小討論分類.從而得到函數的單調區間.
(3)由對任意的恒有成立.首先要求出函數f(x)在[1,3]上且的最大值.從而對于任意使得恒成立即可.再通過分離變量即可得到結論.本題前兩小題較為基礎但第二小題的分類做到清晰不容易,第三小題難度較大.
試題解析:(1)當時,     1分
,解得.                                2分
上是減函數,在上是增函數.               3分
的極小值為,無極大值.                   4分
(2).  6分
①當時,上是減函數,在上是增函數;   7分
②當時,上是減函數;                      8分
③當時,上是減函數,在上是增函數.    9分
(3)當時,由(2)可知上是減函數,
.              10分
對任意的恒成立,
                        11分
對任意恒成立,
對任意恒成立,                         12分
由于當時,,∴.           14分
考點:1.函數的極值問題.2.含參函數的單調性.3.不等式的恒成立問題.4.函數的最值問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(I)討論的單調性;
(Ⅱ)若在(1,+)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)求處的切線方程;
(Ⅱ)求的單調區間;
(Ⅲ)若,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數上是增函數,上是減函數.
(1)求函數的解析式;
(2)若時,恒成立,求實數m的取值范圍;
(3)是否存在實數b,使得方程在區間上恰有兩個相異實數根,若存在,求出b的范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為常數)
(1)當恒成立,求實數的取值范圍;
(2)若函數有對稱中心為A(1,0),求證:函數的切線在切點處穿過圖象的充要條件是恰為函數在點A處的切線.(直線穿過曲線是指:直線與曲線有交點,且在交點左右附近曲線在直線異側)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的導函數是處取得極值,且
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區間上的最大值為,若對任意的總有成立,求的取值范圍;
(Ⅲ)設是曲線上的任意一點.當時,求直線OM斜率的最小值,據此判斷的大小關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(I)若,求函數的單調區間;
(Ⅱ)求證:
(Ⅲ)若函數的圖象在點處的切線的傾斜角為,對于任意的,函數的導函數)在區間上總不是單調函數,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,求曲線處的切線方程;
(Ⅱ)設函數,求函數的單調區間;
(Ⅲ)若在上存在一點,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x-ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數k的最小值;

查看答案和解析>>

同步練習冊答案