(本小題12分)
已知奇函數(shù)
對任意
,總有
,且當(dāng)
時(shí),
.
(1)求證:
是
上的減函數(shù).
(2)求
在
上的最大值和最小值.
(3)若
,求實(shí)數(shù)
的取值范圍。
(1)根據(jù)函數(shù)單調(diào)性的定義法來加以證明
(2)
上最大值為2,最小值為-2.
(3)![]()
解析試題分析:解:(1)證明:令
令
———2’
在
上任意取![]()
——————4’
,
,有定義可知函數(shù)
在
上為單調(diào)遞減函數(shù)。——6’
(2)![]()
![]()
由
可得![]()
故
上最大值為2,最小值為-2. ——————10’
(3)
,由(1)、(2)可得![]()
,故實(shí)數(shù)
的取值范圍為
.——————12’
考點(diǎn):抽象函數(shù)的性質(zhì)
點(diǎn)評:解決該試題的關(guān)鍵是利用抽象關(guān)系式來分析證明函數(shù)單調(diào)性,以及結(jié)合性質(zhì)求解值域,和解決不等式的求解運(yùn)用,屬于基礎(chǔ)題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,試分別解答以下兩小題.
(ⅰ)若不等式
對任意的
恒成立,求實(shí)數(shù)
的取值范圍;
(ⅱ)若
是兩個(gè)不相等的正數(shù),且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)設(shè)函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)遞增區(qū)間;
(II)若關(guān)于
的方程
在區(qū)間
內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
。
(I)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
恒成立,試確定實(shí)數(shù)k的取值范圍;
(Ⅲ)證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
,曲線
在點(diǎn)
處的切線方程為
.
(1)求函數(shù)
的解析式;
(2)過點(diǎn)
能作幾條直線與曲線
相切?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)討論f(x)的單調(diào)性;
(2)設(shè)g(x)=(a2+
)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
不等式選講已知函數(shù)
。
⑴當(dāng)
時(shí),求函數(shù)
的最小值;
⑵當(dāng)函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7f/6/xug341.png" style="vertical-align:middle;" />時(shí),求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)
為奇函數(shù),a為常數(shù)。
(1)求
的值;并證明
在區(qū)間
上為增函數(shù);
(2)若對于區(qū)間
上的每一個(gè)
的值,不等式
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com