中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知向量
(Ⅰ)若,求的值;
(Ⅱ)在中,角的對邊分別是,且滿足,求函數的取值范圍.

(1);(2).

解析試題分析:本題主要考查兩角和與差的正弦公式、二倍角公式、余弦定理、三角函數的值域等基礎知識,考查運用三角公式進行三角變換的能力和基本的運算能力.第一問,利用向量的數量積將坐標代入得表達式,利用倍角公式、兩角和的正弦公式化簡表達式,因為,所以得到,而所求中的角的2倍,利用二倍角公式計算;第二問,利用余弦定理將已知轉化,得到,得到,得到角的范圍,代入到中求值域.
試題解析:(Ⅰ)∵
,∴,∴
(Ⅱ)∵,∴,即,∴
又∵,∴,又∵,∴,∴.
考點:1.向量的數量積;2.倍角公式;3.兩角和與差的正弦公式;4.余弦公式;5.三角函數的值域.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知
(1)求的值;
(2)若,求的值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)求函數的最小正周期;
(2)求函數在區間上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

行列式按第一列展開得,記函數,且的最大值是.
(1)求
(2)將函數的圖像向左平移個單位,再將所得圖像上各點的橫坐標擴大為原來的倍,縱坐標不變,得到函數的圖像,求上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

中,角A、B、C的對邊分別為a、b、c,且角A、B、C成等差教列.
(I)若,求邊c的值;
(II)設,求角A的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在△ABC中,內角A,B,C滿足4sinAsinC-2cos(A-C)=1.
(Ⅰ)求角B的大小;
(Ⅱ)求sinA+2sinC的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數(A>0,>0)的最小值為-1,其圖象相鄰兩個對稱中心之間的距離為.
(1)求函數的解析式
(2)設,則,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求函數的最小正周期;
(2)求函數在區間上的函數值的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知向量
(Ⅰ)求函數的最小正周期及對稱軸方程;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是,b=1,△ABC的面積為,求的值.

查看答案和解析>>

同步練習冊答案