中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知,直線與函數的圖像都相切,且與函數的圖像的切點的橫坐標為1.  
(1)求直線的方程及的值;
(2)若(其中的導函數),求函數的最大值;
(3)當時,求證:

(1),m=-2
(2)取得最大值
(3)由(Ⅱ)知:當時,,即,結合單調性來證明。

解析試題分析:解:(Ⅰ)依題意知:直線是函數在點處的切線,故其斜率
,所以直線的方程為.又因為直線的圖像相切,所以由

不合題意,舍去); .  4分
(Ⅱ)因為),所以
.當時,;當時,
因此,上單調遞增,在上單調遞減.
因此,當時,取得最大值; .  8分
(Ⅲ)當時,.由(Ⅱ)知:當時,,即.因此,有. .  12分
考點:導數的運用
點評:主要是考查了函數的單調性以及不等式的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數對任意滿足,若當時,),且
(1)求實數的值;
(2)求函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于函數,若在定義域內存在實數,滿足,則稱為“局部奇函數”.
(Ⅰ)已知二次函數,試判斷是否為“局部奇函數”?并說明理由;
(Ⅱ)若是定義在區間上的“局部奇函數”,求實數的取值范圍;
(Ⅲ)若為定義域上的“局部奇函數”,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的定義域是的導函數,且
內恒成立.
求函數的單調區間;
,求的取值范圍;
(3) 設的零點,,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,試討論此函數的單調性。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

解方程

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)求函數的周期和遞增區間;
(Ⅱ)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數在點處的切線方程為
(I)求的值;
(II)對函數定義域內的任一個實數恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數=,其中a≠0.
(1)若對一切x∈R,≥1恒成立,求a的取值集合.
(2)在函數的圖像上取定兩點,記直線AB的斜率為K,問:是否存在x0∈(x1,x2),使成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案