設(shè)函數(shù)![]()
(1)當(dāng)
時(shí),求
的最大值;
(2)令![]()
,以其圖象上任意一點(diǎn)
為切點(diǎn)的切線的斜率
恒成立,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),方程
有唯一實(shí)數(shù)解,求正數(shù)
的值.
(1)0;(2)
;(3)1
解析試題分析:(1)當(dāng)
時(shí),
1分
解
得
或
(舍去) 2分
當(dāng)
時(shí),
,
單調(diào)遞增,
當(dāng)
時(shí),
,
單調(diào)遞減 3分
所以
的最大值為
4分
(2)
6分
由
恒成立得
恒成立 7分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/8/1pxqo2.png" style="vertical-align:middle;" />,等號(hào)當(dāng)且僅當(dāng)
時(shí)成立 8分
所以
9分
(3)
時(shí),方程
即![]()
設(shè)
,解![]()
得
(<0舍去),![]()
在
單調(diào)遞減,在
單調(diào)遞增,最小值為
11分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/af/0/1zzum2.png" style="vertical-align:middle;" />有唯一實(shí)數(shù)解,
有唯一零點(diǎn),所以
12分
由
得
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/de/4/gnnta1.png" style="vertical-align:middle;" />單調(diào)遞增,且
,所以
13分
從而
14分
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):此類問題是在知識(shí)的交匯點(diǎn)處命題,將函數(shù)、導(dǎo)數(shù)、不等式、方程的知識(shí)融合在一起進(jìn)行考查,重點(diǎn)考查了利用導(dǎo)數(shù)研究函數(shù)的極值與最值等知識(shí)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.(
)
(1)當(dāng)
時(shí),試確定函數(shù)
在其定義域內(nèi)的單調(diào)性;
(2)求函數(shù)
在
上的最小值;
(3)試證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
其中![]()
(1)若
=0,求
的單調(diào)區(qū)間;
(2)設(shè)
表示
與
兩個(gè)數(shù)中的最大值,求證:當(dāng)0≤x≤1時(shí),|
|≤
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,且
在
和
處取得極值.
(1)求函數(shù)
的解析式.
(2)設(shè)函數(shù)
,是否存在實(shí)數(shù)
,使得曲線
與
軸有兩個(gè)交點(diǎn),若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
文科設(shè)函數(shù)
。(Ⅰ)若函數(shù)
在
處與直線
相切,①求實(shí)數(shù)
,b的值;②求函數(shù)
上的最大值;(Ⅱ)當(dāng)
時(shí),若不等式
對(duì)所有的
都成立,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的最小值為0,其中
。
(1)求a的值
(2)若對(duì)任意的
,有
成立,求實(shí)數(shù)k的最小值
(3)證明![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1) 求
的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù)
,使得對(duì)任意的
,當(dāng)
時(shí)恒有
成立.若存在,求
的范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分l2分)
已知函數(shù)![]()
(1)若
,求函數(shù)
的極小值;
(2)設(shè)函數(shù)
,試問:在定義域內(nèi)是否存在三個(gè)不同的自變量
使得
的值相等,若存在,請(qǐng)求出
的范圍,若不存在,請(qǐng)說明理由?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com